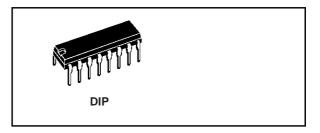
秋 上海双岭电子有限公司

CC4033

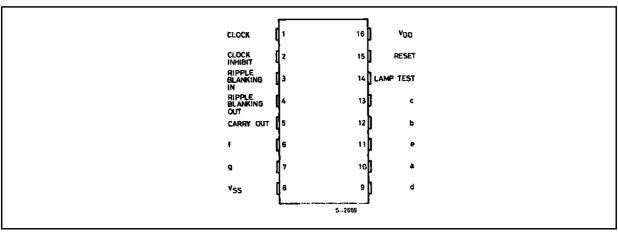

DECADE COUNTER/DIVIDER WITH DECODED 7-SEGMENT DISPLAY OUTPUT AND RIPPLE BLANKING

- COUNTER AND 7-SEGMENT DECODING IN ONE PACKAGE
- EASILY INTERFACED WITH 7-SEGMENT DISPLAY TYPES
- FULLY STATIC COUNTER OPERATION : DC TO 6MHz (Typ.) AT V_{DD} = 10V
- IDEAL FOR LOW POWER DISPLAYS
- RIPPLE BLANKING AND LAMP TEST
- QUIESCENT CURRENT SPECIF. UP TO 20V
- STANDARDIZED SYMMETRICAL OUTPUT
- CHARACTERISTICSINPUT LEAKAGE CURRENT
- $I_{I} = 100$ nA (MAX) AT $V_{DD} = 18V T_{A} = 25^{\circ}C$
- 100% TESTED FOR QUIESCENT CURRENT
- MEETS ALL REQUIREMENTS OF JEDEC JESD13B " STANDARD SPECIFICATIONS FOR DESCRIPTION OF B SERIES CMOS DEVICES"

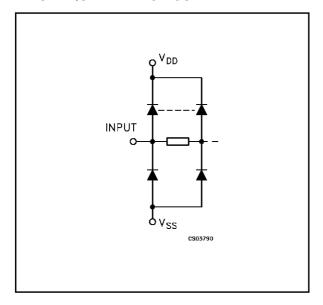
DESCRIPTION

The CC4033 is a monolithic integrated circuit fabricated in Metal Oxide Semiconductor technology available in DIP and SOP packages. The CC4033 consists of a 5-stages Johnson decade counter and an output decoder which converts the Johnson code to a 7 segment decoded output for driving one stage in a numerical display. This device is particularly advantageous in display applications where low power dissipation and/or low package count are

PIN CONNECTION

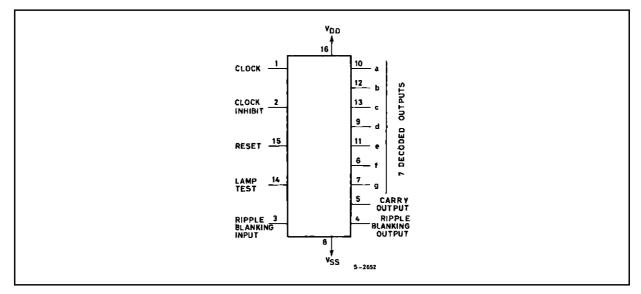


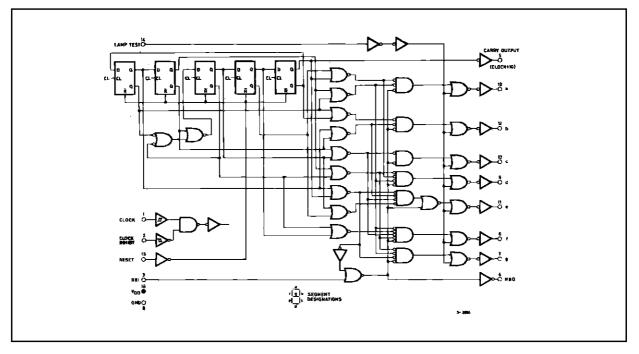
ORDER CODES


PACKAGE	TUBE	T & R							
DIP	CC4033								

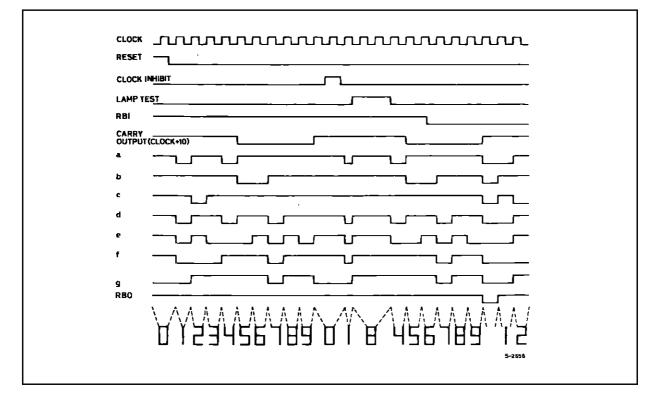
important. This device has CLOCK, RESET, CLOCK INHIBIT, RIPPLE BLANKING, LAMP TEST input, CARRY OUT, RIPPLE BLANKING and 7 DECODED outputs (a to g).

A high RESET signal clears the decade counter to its zero count. The counter is advanced one count at the positive clock signal transition if the CLOCK INHIBIT signal is low. Counter advancement via the clock line is inhibited when the CLOCK INHIBIT signal is high. Antilock gating is provided on the JOHNSON counter, thus assuring proper counting sequence. The CARRY-OUT (C_{OUT}) signal completes one cycle every ten CLOCK INPUT cycles and is used to clock the succeeding decade directly in a multi-decade counting chain.


The seven decoded outputs (a, b, c, d, e, f, g) illuminate the proper segments in a seven segment display device used for representing the decimal numbers 0 to 9. The 7-segment outputs go high on selection. This device has provisions for automating blanking of the non-significant zeros in a multi digit decimal number which results in a easily readable display consistent with normal writing practice. For example, the number 0050.07000 in an eight digit display would be displayed as 50.07. Zero suppression on the integer side is obtained by connecting the RBI terminal of the CC4033 associated with the most significant digit in the display to a low level voltage and connecting the RBO terminal of that stage to the RBI terminal of the CC4033 in the next lower significant position in the display. This procedure is continued for each succeeding CC4033 on the integer side of the display. On the fraction side of the display the RBI of the INPUT EQUIVALENT CIRCUIT


CC4033 associated with the least significant bit is connected to a low level voltage and the RBO of that CC4033 is connected to the RBI terminal of the CC4033 in the next more significant bit position. Again, this procedure is continued for all CC4033 is on the fraction side of the display. In a purely fractional number the zero immediately preceding the decimal point can be displayed by connecting the RBI of that stage to a high level voltage (instead of to the RBO of the next more significant stage). For example : optional zero \rightarrow 0.7346. Likewise, the zero in a number such as 763.0 can be displayed by connecting the RBI of the CC4033 associated with it to a high level voltage. Ripple blanking of non-significant zeros provides an appreciable savings in display power. The CC4033 has a LAMP TEST input which, when connected to a high level voltage, overrides normal decoder operation and enables a check to be made on possible display malfunctions by putting the seven outputs in the high state. **PIN DESCRIPTION**

PIN No	SYMBOL	NAME AND FUNCTION				
1	CLOCK	Clock Input				
10, 12, 13, 9, 11, 6, 7	a to g	7 - Segments Decoded Outputs				
2	CLOCK INHIBIT	Clock Inhibit Input				
15	RESET	Reset Input				
3	RIPPLE BLANKING IN	Ripple Blanking Input				
5	CARRY OUT	Carry Out Output				
4	RIPPLE BLANKING OUT	Ripple Blanking Output				
14	LAMP TEST	Lamp Test Input				
8	V_{SS}	Negative Supply Voltage				
16	V _{DD}	Positive Supply Voltage				


FUNCTIONAL DIAGRAM

LOGIC DIAGRAM

TIMING CHART

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DD}	Supply Voltage	-0.5 to +20	V
VI	DC Input Voltage	-0.5 to V _{DD} + 0.5	V
Ц	DC Input Current	± 10	mA
PD	Power Dissipation per Package	200	mW
	Power Dissipation per Output Transistor	100	mW
T _{op}	Operating Temperature	-55 to +125	°C
T _{stg}	Storage Temperature	-65 to +150	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. All voltage values are referred to V_{SS} pin voltage.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V _{DD}	Supply Voltage	3 to 1 8	V
VI	Input Voltage	0 to V _{DD}	V
T _{op}	Operating Temperature	-55 to 125	°C

DC SPECIFICATIONS

	Parameter	Test Conditions			Value								
Symbol		V _I	vo	Ι _Ο (μΑ)	V _{DD} (V)	T _A = 25°C			-40 to 85°C		-55 to 125°C		Unit
		(V)	(V)			Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
ΙL	Quiescent Current	0/5			5		0.04	5		150		150	
		0/10			10		0.04	10		300		300	۸
		0/15			15		0.04	20		600		600	μA
		0/18			18		m0.08	100		3000		3000	
V _{OH}	High Level Output	0/5		<1	5	4.95			4.95		4.95		
	Voltage	0/10		<1	10	9.95			9.95		9.95		V
		0/15		<1	15	14.95			14.95		14.95		
V _{OL}	Low Level Output	5/0		<1	5		0.05			0.05		0.05	V
	Voltage	10/0		<1	10		0.05			0.05		0.05	
		15/0		<1	15		0.05			0.05		0.05	
VIH	High Level Input Voltage		0.5/4.5	<1	5	3.5			3.5		3.5		V
			1/9	<1	10	7			7		7		
			1.5/18.5	<1	15	11			11		11		
V _{IL}	Low Level Input Voltage		0.5/4.5	<1	5			1.5		1.5		1.5	V
			9/1	<1	10			3		3		3	
			1.5/18.5	<1	15			4		4		4	
I _{OH}	Output Drive	0/5	2.5		5	-1.36	-3.2		-1.1		-1.1		
	Current	0/5	4.6		5	-0.44	-1		-0.36		-0.36		
		0/10	9.5		10	-1.1	-2.6		-0.9		-0.9		mA
		0/15	13.5		15	-3.0	-6.8		-2.4		-2.4		
I _{OL}	Output Sink Current	0/5	0.4		5	0.44	1		0.36		0.36		
		0/10	0.5		10	1.1	2.6		0.9		0.9		mA
		0/15	1.5		15	3.0	6.8		2.4		2.4		
Ι	Input Leakage Current	0/18	any inp	out	18		±10 ⁻⁵	±0.1		±1		±1	μΑ
CI	Input Capacitance		any in	out			5	7.5					рF

The Noise Margin for both "1" and "0" level is: 1V min. with V_{DD} =5V, 2V min. with V_{DD} =10V, 2.5V min. with V_{DD} =15V